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Abstract. For a graph G = (V,E) of order |V (G)| and size |E(G)| a bijection from the
union of the vertex set and the edge set of G into the set {1, 2, . . . , |V (G)| + |E(G)|} is
called a total labeling of G. The vertex-weight of a vertex under a total labeling is the
sum of the label of the vertex and the labels of all edges incident with that vertex. The
edge-weight of an edge is the sum of the label of the edge and the labels of the end vertices
of that edge. A total labeling is called edge-antimagic (respectively, vertex-antimagic) if
all edge-weights (respectively, vertex-weights) are pairwise distinct. If a total labeling is
simultaneously edge-antimagic and vertex-antimagic at the same time, then it is called
a totally antimagic total labeling.
In this paper we prove that complete bipartite graphs admit totally antimagic total
labeling.
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1. Introduction

In this paper we consider finite, simple and undirected graphs. In 1990, Hartsfield and Ringel [6]
introduced the notion of an antimagic labeling of graph. A graph with q edges is called antimagic
if its edges can be labeled with 1, 2, . . . , q without repetition, such that the sums of the labels of the
edges incident to each vertex are distinct. They conjectured that every tree except P2 is antimagic and
moreover, every connected graph except P2 is antimagic. This conjecture was proved true, for all graphs
having minimum degree Ω (log |V (G)|) by Alon, etc in [1], for more results about antimagic labeling on
graphs see [5]. If G is a graph, then V (G) is the vertex set and E(G) is an edge set of G, respectively. A
bijection f : V (G) ∪ E(G)→ {1, 2, . . . , |V (G)|+ |E(G)|} is called a total labeling of G. A total labeling
is called edge-antimagic, if the edge-weights are all distinct. A total labeling is called vertex-antimagic,
if the vertex-weights are all distinct. The notion of edge-antimagic total labeling was introduced by
Simanjuntak, Bertault and Miller in [8] as a natural extension of magic valuation defined by Kotzing and
Rosa in [7]. Simanjuntak, Bertault and Miller [8] proved that Cn, C2n, C2n+1, P2n and P2n+1 have edge-
antimagic total labeling. And the notion of vertex-antimagic total labeling of graphs was introduced by
Bača, etc in [2], were they proved that paths, cycles and other graphs have vertex-antimagic total labeling.
If a graph G with p vertices and q edges possessing a labeling that is simultaneously edge-antimagic total
labeling and vertex-antimagic total labeling, then this labeling is called a totally antimagic total labeling,
and a graph that admits such a labeling is called totally antimagic total graph. The concept of totally
antimagic total labeling was introduced by Bača, etc in [3], were they proved that paths, cycles, stars,
double-stars and wheels are totally antimagic total. This concept was introduced as natural extension of



the concept of totally magic labeling defined by Exoo, etc in [4], were they proved that K1,K3, P3, cycle
C3 and complete bipartite graph K1,2 are the only graphs admits totally magic labeling.

2. MAIN RESULTS

Theorem 2.1. The complete bipartite graph Kn,n, admits totally antimagic total labeling, for every
n ≥ 3.

Proof. Let the vertex set and the edge set of Kn,n, n ≥ 3 be

V (Kn,n) = V1 ∪ V2 = {vi : i = 1, 2, . . . , n} ∪ {uj : j = 1, 2, . . . , n},
E(Kn,n) = {viuj : i = 1, 2, . . . , n, j = 1, 2, . . . , n}.

For n ≥ 3, we define a bijection f : V (Kn,n) ∪ E(Kn,n)→ {1, 2, . . . , n2 + 2n} such that
Case 1: if n is even,

f(vi) =

{
i(n + 1)− n for i = 1, 2, . . . , n

2 ,

i(n + 1) for i = n
2 + 1, n

2 + 2, . . . , n,

f(uj) =n(n+1)
2 + j for j = 1, 2, . . . , n,

f(viuj) =

{
i(n + 1)− n + j for i = 1, 2, . . . , n

2 , j = 1, 2, . . . , n,

i(n + 1) + j for i = n
2 + 1, n

2 + 2, . . . , n, j = 1, 2, . . . , n.

For the edge-weights for j = 1, 2, . . . , n, we get

wtf (viuj) = f(vi) + f(uj) + f(viuj)

=

{
i(n + 1)− n + n(n+1)

2 + j + i(n + 1)− n + j for i = 1, 2, . . . , n
2 ,

i(n + 1) + n(n+1)
2 + j + i(n + 1) + j for i = n

2 + 1, n
2 + 2, . . . , n,

=

{
n2−3n+4ni+4i+4j

2 for i = 1, 2, . . . , n
2 ,

n2+4ni+n+4i+4j
2 for i = n

2 + 1, n
2 + 2, . . . , n.

Thus the edge-weights are all distinct, and it easy to observe that edge-weights form the square matrix
A = (aij)n×n, where

aij = n2−3n+4ni+4i+4j
2 for i = 1, 2, . . . , n

2 , j = 1, 2, . . . , n,

aij = n2+4ni+n+4i+4j
2 for i = n

2 + 1, n
2 + 2, . . . , n, j = 1, 2, . . . , n.

Hence A is

A =



n2+n+8
2

n2+n+12
2

n2+n+16
2 · · · n2+5n

2
n2+5n+4

2
n2+5n+12

2
n2+5n+16

2
n2+5n+20

2 · · · n2+9n+4
2

n2+9n+8
2

...
...

5n2+n
2

5n2+n+4
2

5n2+n+8
2 · · · 5n2+5n−8

2
5n2+5n−4

2
5n2+5n+4

2
5n2+5n+8

2
5n2+5n+12

2 · · · 5n2+9n−4
2

5n2+9n
2

 .



From the matrix A it is easy to see that edge-weights are all distinct. For vertex-weights we have the
following. First for the set of vertices in V1, when i = 1, 2, . . . , n, j = 1, 2, . . . , n, we get

wtf (vi) = f(vi) +
∑

uj∈V2

f(viuj)

=


i(n + 1)− n +

n∑
j=1

f(viuj) for i = 1, 2, . . . , n
2 ,

i(n + 1) +
n∑

j=1

f(viuj) for i = n
2 + 1, n

2 + 2, . . . , n,

=


i(n + 1)− n +

n∑
j=1

(i(n + 1)− n + j) for i = 1, 2, . . . , n
2 ,

i(n + 1) +
n∑

j=1

(i(n + 1) + j) for i = n
2 + 1, n

2 + 2, . . . , n,

=

{
2i(n2+2n+1)−n(n+1)

2 for i = 1, 2, . . . , n
2 ,

2i(n2+2n+1)+n(n+1)
2 for i = n

2 + 1, n
2 + 2, . . . , n.

It is easy to show that wtf (v1) < wtf (v2) < · · · < wtf (vn). Second for vertex-weights of set of vertices
V2, we get

wtf (uj) = f(uj) +
∑
vi∈V1

f(ujvi) = f(uj) +

n∑
i=1

f(ujvi)

= n(n+1)
2 + j +

n
2∑

i=1

(i(n + 1)− n + j) +

n∑
i=

n
2 +1

(i(n + 1) + j)

= n(n2+2n+2)
2 + (n + 1)j for j = 1, 2, . . . , n.

So that wtf (u1) < wtf (u2) < · · · < wtf (un).
Finally, we want to show that the sets of the vertex-weights of vertices V1 and V2 do not overlap.
For i = n

2 , we have

wtf (vn
2

) =
2(

n
2 )(n2+2n+1)−n(n+1)

2 = n3+n2

2 < n3+2n2+4n+2
2 = wtf (u1).

On the other hand

wtf (un) = n3+4n2+4n
2 < n3+5n2+6n+2

2 = wtf (vn
2 +1

).

So that

wtf (v1) <wtf (v2) < · · · < wtf (vn
2

) < wtf (u1) < wtf (u2) < · · · < wtf (un)

<wtf (vn+2
2

) < wtf (vn+4
2

) < · · · < wtf (vn).

Hence, vertex-weights are all distinct.
Case 2: if n is odd,

f(vi) = i(n + 1)− n for i = 1, 2, . . . , n,

f(uj) = n(n + 1) + j for j = 1, 2, . . . , n,

f(viuj) = i(n + 1)− n + j for i = 1, 2, . . . , n, j = 1, 2, . . . , n.



For the edge-weights we have

wtf (viuj) = f(vi) + f(uj) + f(viuj)

= i(n + 1)− n + n(n + 1) + j + i(n + 1)− n + j

= n2 − n + 2i(n + 1) + 2j for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

It is easy to see that the edge-weights are all distinct.
For the vertex-weights we have the following. First for the set of vertices in V1 we get,

wtf (vi) = f(vi) +
∑

uj∈V2

f(viuj) = i(n + 1)− n +

n∑
j=1

f(viuj)

= i(n + 1)− n +

n∑
j=1

[i(n + 1)− n + j]

= 2i(n2+2n+1)−n(n+1)
2 for i = 1, 2, . . . , n.

It is easy to show that wtf (v1) < wtf (v2) < · · · < wtf (vn).
Second for vertex-weights of the set of vertices in V2, we get

wtf (uj) = f(uj) +
∑
vi∈V1

f(ujvi) = n(n + 1) + j +

n∑
i=1

f(ujvi)

= n(n + 1) + j +

n∑
i=1

[i(n + 1)− n + j]

= n3+2n2+3n+2j(n+1)
2 for j = 1, 2, . . . , n.

So that wtf (u1) < wtf (u2) < · · · < wtf (un).
Finally, we want to show that the sets of the vertex-weights of vertices V1 and V2 do not overlap.
For i = n+1

2 , we have

wtf (vn+1
2

) =
2(

n+1
2 )(n2+2n+1)−n(n+1)

2 = n3+2n2+2n+1
2 < n3+2n2+5n+2

2 = wtf (u1).

On the other hand

wtf (un) = n3+4n2+5n
2 < n3+4n2+6n+3

2 = wtf (vn+1
2 +1

).

So that

wtf (v1) <wtf (v2) < · · · < wtf (vn+1
2

) < wtf (u1) < wtf (u2) < · · · < wtf (un)

<wtf (vn+1
2 +1

) < wtf (vn+1
2 +2

) < · · · < wtf (vn).

Hence, vertex-weights are all distinct, this concludes the proof. �

Theorem 2.2. The complete bipartite graph Kn,m, n ≤ m/2 admits totally antimagic total labeling for
every n ≥ 3.

Proof. Let the vertex set and the edge set of Kn,m, n ≥ 3 be

V (Kn,m) = V1 ∪ V2 = {vi : i = 1, 2, . . . , n} ∪ {uj : j = 1, 2, . . . ,m},
E(Kn,m) = {viuj : i = 1, 2, . . . , n, j = 1, 2, . . . ,m}.

For n ≥ 3, n ≤ m
2 we define a bijection f : V (Kn,m) ∪ E(Kn,m)→ {1, 2, . . . , nm + n + m} such that



Case 1: if n is even,

f(vi) = nm + m + i for i = 1, 2, . . . , n,

f(uj) = j for j = 1, 2, . . . ,m,

f(viuj) = m + nj − n + i for i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

For the edge-weights we get

wtf (viuj) = f(vi) + f(uj) + f(viuj)

= (nm + m + i) + j + (m + nj − n + i)

= m(n + 2) + j(n + 1)− n + 2i for i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

It is easy to see that the edge-weights are all distinct.
For vertex-weights we have the following. For the set of vertices in V1, we get

wtf (vi) = f(vi) +
∑

uj∈V2

f(viuj) = f(vi) +

m∑
j=1

f(viuj)

= (mn + m + i) +

m∑
j=1

(m + nj − n + i)

= (mn + m + i) + (m2 + m2n+mn
2 −mn + im)

= m2(n+2)+m(n+2)+2i(m+1)
2 for i = 1, 2, . . . , n.

It is easy to show that wtf (v1) < wtf (v2) < · · · < wtf (vn).
Second for vertex-weights of the set of vertices in V2, we get

wtf (uj) = f(uj) +
∑
vi∈V1

f(viuj) = f(uj) +

n∑
i=1

f(viuj)

= j +

n∑
i=1

(m + nj − n + i)

= n2(2j−1)+n(2m+1)+2j
2 for j = 1, 2, . . . ,m.

So that wtf (u1) < wtf (u2) < · · · < wtf (um).
Finally, we want to show that the sets of the vertex-weights of vertices V1 and V2 do not overlap.

For j = m, we have

wtf (um) = n2(2m−1)+n(2m+1)+2n
2

= 2n(nm)+nm+nm+2m+(n−n2)
2

≤ nm2+nm+nm+2m+(n−n2)
2 since (n ≤ m

2 )

< nm2+2m2+nm+2m+(n−n2)
2 since (n < m)⇒ (n < 2m2)

< nm2+2m2+nm+2m+(2m+2)
2 since (n− n2 < 0 < 2m + 2)

= wtf (v1).

So that
wtf (u1) < wtf (u2) < · · · < wtf (um) < wtf (v1) < wtf (v2) < · · · < wtf (vn).



Case 2: if n is odd,

f(vi) = nm + m + n + 2− 2i for i = 1, 2, . . . , n,

f(uj) = j for j = 1, 2, . . . ,m,

f(viuj) =


m + nj − n + i for i = 1, 2, . . . , n, j = 1, 2, . . . ,m− 1,

m + nm + 2− 2i for i = 1, 2, . . . , n+1
2 , j = m,

m + nm + 2− 2i + 2n for i = n+1
2 + 1, n+1

2 + 2, . . . , n, j = m.

For the edge-weights we get

wtf (viuj) = f(vi) + f(uj) + f(viuj) for i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

=



(nm + m + n + 2− 2i) + j + (m + nj − n + i)

for i = 1, 2, . . . , n, j = 1, 2, . . . ,m− 1,

(nm + m + n + 2− 2i) + j + (m + nm + 2− 2i)

for i = 1, 2, . . . , n+1
2 , j = m,

(nm + m + n + 2− 2i) + j + (m + nm + 2− 2i + 2n)

for i = n+1
2 + 1, n+1

2 + 2, . . . , n, j = m,

=


m(n + 2) + 2 + j(n + 1)− i for i = 1, 2, . . . , n, j = 1, 2, . . . ,m− 1,

2m(n + 1) + n + 4 + j − 4i for i = 1, 2, . . . , n+1
2 , j = m,

2m(n + 1) + 3n + 4 + j − 4i for i = n+1
2 + 1, n+1

2 + 2, . . . , n, j = m.

It is easy to see that the edge-weights are all distinct. For vertex-weights we have the following.
First for the set of vertices in V1, we get

wtf (vi) = f(vi) +
∑

uj∈V2

f(viuj) = f(vi) +

m∑
j=1

f(viuj)

=



(nm + m + n + 2− 2i) +
m−1∑
j=1

(m + nj − n + i) + (m + nm + 2− 2i)

for i = 1, 2, . . . , (n+1)
2 ,

(nm + m + n + 2− 2i) +
m−1∑
j=1

(m + nj − n + i) + (m + nm + 2− 2i + 2n)

for i = (n+1)
2 + 1, (n+1)

2 + 2, . . . , n,

=

{
nm + m + nm2

2 + (m2 + 2n + mi− 5i + 4− nm
2 ) for i = 1, 2, . . . , n+1

2 ,

nm + m + nm2

2 + (m2 + 2n + mi− 5i + 4− nm
2 + 2n) for i = n+1

2 + 1, n+1
2 + 2, . . . , n.

So that wtf (v1) < wtf (v2) < · · · < wtf (vn).



Second for vertex-weights of the set of vertices in V2, we get

wtf (uj) = f(uj) +
∑
vi∈V1

f(ujvi) = f(uj) +

n∑
i=1

f(ujvi)

= j +

n∑
i=1

(m + nj − n + i)

= mn + n2j + j + n−n2

2 for j = 1, 2, . . . ,m− 1,

wtf (um) = j +

n+1
2∑

i=1

(m + nm + 2− 2i) +

n∑
i=

n+1
2 +1

(m + nm + 2− 2i + 2n)

= mn + m + n2m.

So that wtf (u1) < wtf (u2) < · · · < wtf (um).
Finally, we want to show the sets of the vertex-weights of vertices V1 and V2 do not overlap.
For j = m, we have

wtf (um) = mn + m + n2m = mn + m + n(nm)

≤ mn + m + m
2 (nm) since (n ≤ m

2 )

≤ mn + m + nm2

2

< mn + m + nm2

2 + (m2 + 2n + m− 1− nm
2 )

= wtf (v1).

So that wtf (u1) < wtf (u2) < · · · < wtf (um) < wtf (v1) < wtf (v2) < · · · < wtf (vn). Hence, vertex-
weights are all distinct, this cocludes the proof. �

3. CONCLUSION

In this paper we proved that complete bipartite graphs Kn,n, n ≥ 3 and Kn,m, n ≤ m/2 are simulta-
neously vertex-antimagic total and edge-antimagic total.
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