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Abstract. A cone theoretic Krein-Milman theorem states that in any locally convex
T0 topological cone, every convex compact saturated subset is the compact saturated
convex hull of its m-extreme points. In this paper, we prove the Milman theorem in T0
topological cone, which is a kind of converse of the Krein-Milman theorem. Moreover,
we prove some other results about m-extreme points in T0 topological cones.
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1. Introduction

The branch of order theory called domain theory was initiated in the early 1970s with the pioneering
work of Dana S. Scott on a model of untyped lambda-calculus [16]. Progress in this domain rapidly
required a lot of material on (non-Hausdorff) topologies. After about 40 years of domain theory, one is
forced to recognize that topology and domain theory have been beneficial to each other [5, 7].

One of Klaus Keimel’s many mathematical interests is the interaction between order theory and func-
tional analysis. In recent years this has led to the beginnings of a domain-theoretic functional analysis,
which may be considered to be a topic within positive analysis in the sense of Jimmie Lawson [11]. In the
latter, notions of positivity and order play a key role, as do lower semicontinuity and so T0 spaces. Some
basic functional analytic tools were developed by Roth and Tix and later on Plotkin and Keimel for these
structures. Roth has written several papers in this area including his papers [13, 14] on Hahn-Banach
type theorems for locally convex cones. Tix in her 1999 Ph.D. thesis gave a domain-theoretic version of
these theorems in the framework of d-cones (see [17, 18]). Plotkin subsequently gave another separation
theorem, which was incorporated, together with other improvements, into a revised version of Tix’s thesis
[19, 12]. Finally, Keimel [9] improved the Hahn-Banach theorems to semitopological cones.

The theory of locally convex cones, with applications to Korovkin type approximation theory for
positive operators and to vector-measure theory, developed in the books by Keimel and Roth [10] and
Roth [15], respectively.

The extreme points of a convex set are of interest primarily because of the Krein-Milman theorem
and its generalizations. The Krein-Milman theorem asserts that a compact convex subset K of a locally
convex Hausdorff space is the closed convex hull of its extreme points [2].

In 2008, Goubault-Larrecq [6], proved a Krein-Milman type theorem for non-Hausdorff cones (in the
sense of Keimel [9]). In fact, he proved the following analogue of the Krein-Milman theorem: in any
locally convex T0 topological cone C, every convex compact saturated subset is the compact saturated
convex hull of its extreme points.

The classical Milman theorem (see [3, Theorem 3.66]), states that if X is a locally convex space and
B is a nonempty subset of X such that conv(B) is compact, then Ext(conv(B)) ⊂ B. We show that a
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similar result holds when X is a T0 topological cone. Finally, as an application, it is observed that, the
solutions points of a linear inequality system, under some conditions are m-extreme points.

2. Preliminaries

For convenience of the reader, we give a survey of the relevant materials from [1, 2, 7] and [9], without
proofs, thus making our exposition self-contained.

For subsets A of a partially ordered set P we use the following notations:
↓ A = {x ∈ P : x ≤ a for some a ∈ A},
↑ A = {x ∈ P : x ≥ a for some a ∈ A}.

It is called that A is a lower or upper set, if ↓ A = A or ↑ A = A, respectively. Upper sets will also be
called saturated and ↑ A will be called the saturation of A.

We denote by R+ the subset of all nonnegative reals. Further, R = R ∪ {+∞}and R+ = R+ ∪ {+∞}.
Addition, multiplication and the order are extended to +∞ in the usual way. In particular, +∞ becomes
the greatest element and we put 0 · (+∞) = 0.

According to [9], a cone is a set C, together with two operations + : C × C → C and · : R+ × C → C
and a neutral element 0 ∈ C, satisfying the following laws for all v, w, u ∈ C and λ, µ ∈ R+:

0 + v = v, 1v = v,

v + (w + u) = (v + w) + u, (λµ)v = λ(µv),

v + w = w + v, (λ+ µ)v = λv + µv,

λ(v + w) = λv + λw.

An ordered cone C is a cone endowed with a partial order ≤ such that the addition and multiplication
by fixed scalars r ∈ R+ are order preserving, that is, for all x, y, z ∈ C and all r ∈ R+:

x ≤ y ⇒ x+ z ≤ y + z and rx ≤ ry.

Let us recall that a linear function from a cone (C,+, ·) to a cone (C ′,+, ·) is a function f : C → C ′

such that f(v + w) = f(v) + f(w) and f(λv) = λf(v), for all v, w ∈ C and λ ∈ R+.
A subset D of a cone C is said to be convex, if for all u, v ∈ D and λ ∈ [0, 1], λu+ (1− λ)v ∈ D. The

convex closure of a set D is defined to be the smallest convex set containing D.
For example, Rn+ is a cone, with the coordinate-wise operations. On R+, the order is just the usual

order ≤ of the reals. On Rn+, it is the coordinate-wise order.
Recall that a partially ordered set (A,≤) is called directed if for every a, b ∈ A there exits c ∈ A with

a, b ≤ c. A partially ordered set (D,≤) is called a cpo if every directed subset A of D has a least upper
bound in D. The least upper bound of a directed subset A is denoted by t↑A, and it is also called the
directed supremum, or sometimes the limit of A.

Any T0 space X comes with an intrinsic order, the specialization order which is defined by x ≤ y if the
element x is contained in the closure of the singleton {y} or equivalently, if every open set containing x
also contains y.

In any T0 space X, the downward closure ↓ E is closed whenever E is finite [6, Page 2].
Given any ordering ≤ on a set X, there are at least two topologies with ≤ as specialization ordering,

the coarsest possible one (upper topology : a base is given by the complements of sets of the form ↓ E, for
E a finite subset of X) and the finest possible one (Alexandroff topology) (see [7, Section 4.2.2] for more
details). Additionally, there are some other interesting topologies in between. An important example of
a topology that sits in between is the Scott topology.

Let D be a partially ordered set. A subset A is called Scott closed if it is a lower set and is closed
under supremum of directed subsets, as far as these suprema exist. Complements of Scott closed sets
are called Scott open. The collection of all Scott opens is a topology, called the Scott topology on D [7,
Proposition 4.2.18]. We write Dσ for the set D with the Scott topology.



On the extended reals R and on its subsets R+ and R+ we use the upper topology, the only open sets
for which are the open intervals {s : s > r}. This upper topology is T0, but far from being Hausdorff.

According to [8], a topological cone is a cone C with a T0 topology such that the addition and scalar
multiplication are separately continuous, that is:

Scalar multiplication (r, a) 7→ ra : R+ × C → C is jointly continuous,

Adition (a, b) 7→ a+ b : C × C → C is jointly continuous.

For example, Rn+ is a topological cone, R+ is also a topological cone, and Rn+ as well. Again, R+ is
equipped with its Scott topology [6].

A cone C with a topology is called locally convex, if each point has a neighborhood basis of open
convex neighborhoods.

Let C be a cone. For any two points x, y of C, let ]x, y[ be the set of points of the form r ·x+(1−r) ·y,
with 0 < r < 1. It is tempting to call this the open line segment between x and y, however be aware that
it is generally not open.

(Extreme Point) Let X be linear space. An extreme point of a convex set A ⊂ X, is a point x ∈ A,
with the property that if x = ty + (1− t)z with y, z ∈ A and t ∈ [0, 1], then y = x and or z = x. Ext(A)
will denote the set of extreme points of A.

Let B be a subset of a T0 topological cone C, with specialization ordering.
(m-Extreme Point) An m-extreme point of B is any element x ∈ B that is minimal in B, and such

that there are no two distinct points x1 and x2 of B such that x ∈]x1, x2[. Extm(B) will denote the set
of m-extreme points of B.

In the sequel, we shall need the notion of a closed subset of B. This is by definition the intersection
of a closed subset of C with B.

(Face) Call a face A of B any non-empty closed subset of B such that, for any x1, x2 ∈ Q, if ]x1, x2[
intersects A, then ]x1, x2[ is entirely contained in A.

A cone-theoretic version of the Krein-Milman theorem [6]: Let C be a locally convex T0 topological
cone, Q a convex compact saturated subset of C. Then B is the smallest convex compact saturated
subset of C containing the extreme points of B.

3. Main results

The purpose of this section is to study the concept of m-extreme points in a T0 topological cone, say
C. First, we prove some basic results in topological cones.

Proposition 3.1. Let C be a topological cone and B ⊂ C. Then we have the following statements:

(i) If B is a compact set, then ↑ B is compact.
(ii) If B is a convex set, then ↑ B and ↓ B are convex, too.
(iii) If B is a upper set, then conv(B) is upper set.
(iv) conv(↑ B) =↑ conv(B).
(v) conv(B) is not necessarily included ↑ B.
(vi) Extm(Bc)∩B ⊂ Extm(B), where Bc indicates smallest compact saturated subset of C containing

B, but the inverse is not necessarily true.

Proof. (i) Let O be an open cover for ↑ B, so it is an open cover for B and has a finite subcover for B.
This finite subcover is subcover for ↑ B, too, and the proof is complete.

(ii) Let x, y ∈↓ B. So there exist a, b ∈ B such that x ≤ a and y ≤ b. Since scalar multiplication is
continuous, so for 0 ≤ λ ≤ 1, we have λx ≤ λa and (1− λ)y ≤ (1− λ)b. Since + is continuous, hence

λx+ (1− λ)y ≤ λa+ (1− λ)y ≤ λa+ (1− λ)b.

Therefore, λx+ (1− λ)y ∈↓ B.



(iii) Let x ∈ conv(B) and y ∈ C such that x ≤ y. Then there exists 0 ≤ λ ≤ 1 and x1, x2 ∈ B such that
x = λx1 + (1− λ)x2. Suppose 0 < λ < 1. Since λx1 ≤ λx1 + (1− λ)x2 and (1− λ)x2 ≤ λx1 + (1− λ)x2,
so x1 ≤ 1

λy and x2 ≤ 1
1−λy. Thus 1

λy,
1

1−λy ∈ B. Therefore, y ∈ conv(B) and conv(B) is an upper set.

(iv) Clearly conv(↑ B) ⊂↑ conv(B). Since conv(B) ⊂ conv(↑ B) and conv(↑ B) is an upper set so
↑ conv(B) ⊂ conv(↑ B).

(v), (vi) The proof is trivial. �

Let convc(B) indicates smallest convex compact saturated subset of C containing B. Note that
convc(B) is not necessarily included ↑ B. To see this, let C = R2

+ and B = {(2, 1), (2, 2), (1, 2)}, then
convc(B) *↑ B.

Now we prove the following cone-theoretic version of the Milman theorem, which is a kind of converse
of Krein-Milman theorem.

Theorem 3.2. Let C be a topological cone such that for each a ∈ C, the operator T (x) = a + x is an
open mapping and let B be a nonempty compact subset of C. Then Extm(convc(B)) ⊂↑ B .

Proof. Let x, y ∈ C such that for some z ∈ C, y = x + z. By the definition of topological cone, we
know that the function S : b 7→ x + b : C → C is continuous. So S({z}) ⊂ S(z) and then x ∈ {y}
and so x ≤ y. Therefore, we show that every m-extreme point of convc(B) lies in B + C. Since B is
compact, it can be covered by a finite number of sets xi + C, where xi ∈ B for i = 1, 2, . . . , n. The sets
Bi := convc(B ∩ (xi +C)) are convex and compact, hence conv(∪ni=1Bi) are also convex and compact. It
follows easily that convc(B) = conv(∪ni=1Bi). If e ∈ Extm(convc(B)), then e =

∑n
i=1 λibi, where bi ∈ Bi,

λi ≥ 0 for all i = 1, 2, . . . , n and
∑n
i=1 λi = 1. Now we conclude that, e = bi for some bi. This proves

that Extm(convc(B)) ⊂ B + C, therefore Extm(convc(B)) ⊂↑ B. �

Example 3.3. Let B = {(1, 1), (2, 1), (1, 2)}. Then

convc(B) =↑ [(2, 1), (1, 2)]

and therefore
Extm(convc(B)) = {(2, 1), (1, 2)}.

Remark 3.4. Note that the compactness condition is essential in the above theorem. The following
example shows that without this condition the result is no longer true. Suppose that C = R2

+ and

B = {(x, y) : x+ y = 1,
1

4
≤ x < 3

4
,

1

4
≤ y ≤ 3

4
}.

Then the set of B is not compact and Extm(convc(B)) *↑ B.

In the sequel, we denote the Euclidean topology on Rn+ with τ . Let B be a convex subset of Rn. If
F ⊂ B is a half-line face of B, F is called extreme ray. Exram(B) will denote the minimal of the set of
extreme ray of B. In the classical analysis, every nonempty τ -closed convex subset B of Rn which does
not contain any line is the convex hull of its extreme points and extreme rays, which is due to V. Klee.
In the sequel, we show that the similar is true in T0 topological cone Rn+.

Theorem 3.5. Let B be a nonempty saturated compact convex subset of topological cone Rn+. Then B
is convex hull of Extm(B) and Exram(B).

Proof. Since B is a saturated compact set, so it is the intersection of all finitely generated upper sets [5,
Lemma III-5.7.], so B is a τ -closed set and since R2

+ does not contain any line, hence

B = conv(Ext(B) ∪ Exra(B)).

Since B is an upper set, so
B =↑ conv(Ext(B) ∪ Exra(B)).

Since B is τ -closed, we obtain ↑ B =↑ Min(B). To see this, it suffices to show that B ⊂↑ Min(B).
Let x ∈ B, consider the τ -closed set W =↓ x ∩ B with coordinate-wise order. Since W is closed and



bounded, so every descending chain in W has a lower bound. Hence by Zorn’s lemma, W contains at
least one minimal element, say y. Note that, y ∈Min(B) and y ≤ x, so x ∈↑Min(B). It follows that

B =↑MinB(conv(Ext(B) ∪ Exra(B)).

Therefore,

B =↑ conv(MinB(Ext(B) ∪ Exra(B)),

in other words,

B =↑ conv(Extm(B) ∪ Exram(B))

and the proof is complete. �

Let us illustrate the above theorem with the following example.

Example 3.6. Let B =↑ [(2, 1), (1, 2)] ⊂ R2
+, which is a convex saturated compact set. We get

Extm(B) = {(2, 1), (1, 2)}. Note that, conv(Extm(B)) = [(2, 1), (1, 2)]. Therefore ↑ conv(Extm(B)) = B.

The concept of extreme point can be applicable in the solving of the linear inequality. Suppose that
P = {x ∈ Rn : Ax ≥ b}, A is a (m × n)-matrix, b ∈ Rm. Let y ∈ P and A′x = b′ be the subsystem of
Ax = b such that y is a unique solution to this subsystem and rank(A′) = rank(A′ b′) = n. Then y is
an extreme point of P [4, Proposition 3.3.1].

Remark 3.7. In the later discussion, let A be a non-negative (m × n)-matrix and b ∈ Rm+ . Then y is
an m-extreme point of P . Indeed, if w ∈ P and w ≤ y, then b′ ≤ A′w ≤ A′y = b′ (with coordinate-wise
order), and A′w = b′. Since y is an unique solution to subsystem A′x = b′ so, w = y, hence A′w = b′.

For example, consider in R3 the set P of the solution to the system Ax ≥ b:
x1 + 2x2 + 3x3 ≥ 1

x1 + x2 + 4x3 ≥ 1

2x1 + x3 ≥ 2

x1 + x2 + x3 ≥ 1.

Consider the following subsystem A′x ≥ b:
x1 + 2x2 + 3x3 ≥ 1

x1 + x2 + 4x3 ≥ 1

2x1 + x3 ≥ 2.

Note that, rank(A′) = rank(A′ b′) = 3 and y = (0, 1, 0) is the only solution to the system A′x = b, and
y is an m-extreme point of P .
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